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Abstract. Using Monte Carlo techniques and a star–triangle transformation, Ising models with
random, ‘strong’ and ‘weak’, nearest-neighbour ferromagnetic couplings on a square lattice with
a (1,1) surface are studied near the phase transition. Both surface and bulk critical properties
are investigated. In particular, the critical exponents of the surface magnetization,β1, of the
correlation length,ν, and of the critical surface correlations,η‖, are analysed.

1. Introduction

Quenched randomness may have a profound effect on the nature of phase transitions. If
there is a continuous phase transition in the perfect system then, according to the Harris
criterion [1], the relevance of the perturbation is connected to the sign of the specific heat
exponentα in the pure system. The two-dimensional random Ising model withα = 0
represents the borderline case of the perturbational theory. Indeed, that model has been the
subject of intense investigations to clarify its critical properties [2–4].

According to field-theoretical studies [2, 3] the randomness is, in the renormalization
group sense, a marginally irrelevant perturbation, and therefore leads to logarithmic
corrections to the power-law singularities of the pure model. For example, the bulk
magnetization,mb, and the correlation length,ξ , are expected to behave near the transition
point as

mb ∼ t1/8| ln t |−1/16 (1)

and

ξ ∼ t−1| ln t |1/2 (2)

wheret = |Tc−T |/Tc is the reduced temperature. The critical spin–spin correlation function
G(r) averagedover several samples has a pure power-law decay [5]

G(r) ∼ r−1/4[A+ B/(ln r)−2] (3)

whereas thetypical correlation function calculated in a large single sample is conjectured
[6] to decay as

G(r) ∼ r−1/4(ln r)−1/8. (4)

The above conjectures are found to be in agreement with numerical results of large-scale
Monte Carlo (MC) simulations [7, 4, 8] and transfer matrix calculations [9–11]. However,
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conflicting interpretations of the numerical findings have also been suggested, invoking
dilution-dependent critical exponents and weak universality [12, 13].

In this paper, we consider the boundary critical behaviour of the two-dimensional
random bond Ising model. The surface critical properties of the perfect model have been
exactly known for many years [14]. For example, the asymptotic behaviour of the surface
magnetization,m1, and the correlation length,ξ‖, measured parallel to the surface, is given
by

m1 ∼ t1/2 (5)

and

ξ‖ ∼ t−1 (6)

whereas the critical surface spin–spin correlation function has the asymptotic decay:

Gs(r) ∼ r−1. (7)

Thus, the corresponding critical exponents areβ1 = 1
2, ν‖ = 1 and η‖ = 1. No field-

theoretical results are available for the random case. However, it seems reasonable to
expect, in analogy to the bulk properties, that the randomness is a marginally irrelevant
variable at the surface fixed point as well. Then one might obtain logarithmic corrections
to the asymptotic behaviour of the perfect model.

In this study, we performed extensive numerical investigations to illuminate this issue by
determining the surface critical properties of the Ising model with nearest-neighbour random
couplings on the square lattice. In our first approach, we used large-scale MC techniques and
computed the surface magnetization and the complete magnetization profile of the model.
Our second method is based on the star–triangle (ST) transformation. By that method we
calculated both the surface magnetization and the surface correlation function of the model.
By the two, in several respects complementary approaches, we determined numerically the
complete set of surface critical exponents, including the surface magnetization exponentβ1,
the correlation length exponentν‖ and the decay exponent of the critical suface correlations
η‖. Note that some of the MC results on the surface magnetization have already been
announced in [15].

This paper is organized as follows. The MC results on the surface magnetization and
the magnetization profiles are presented in section 2. In section 3 we describe the ST
approach as applied to the random Ising model and discuss the numerical results on the
surface magnetization and the surface correlation function. The main conclusions are given
in section 4. Some details of the ST method have been transferred to the appendix.

2. Monte Carlo simulations

Let us consider the Ising model with nearest-neighbour ferromagnetic couplings, where
the spinssi,j (=±1) are situated on the sites(i, j) of a square lattice. A surface may be
introduced by cutting the coupling bonds along one of the axes of the lattice, leading to
the (10) surface, or along the diagonal, leading to the (11) surface. In the MC simulations,
we studied systems with two parallel surface lines, each line havingL sites. Each row
perpendicular to the surface consists ofK sites. The spins in the first and last row are
assumed to be connected by periodic boundary conditions. The lines parallel to the surfaces
are numbered by the indexi, i.e. i = 1 andi = K denote the two surface lines. The index
j refers to the position along a line, running from 1 toL. The total number of spins is
K × L. The aim of the simulations is to determine thermal properties of the semi-infinite
system, whereK,L −→∞; therefore finite-size effects need to be studied with care.
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The interaction between neighbouring spins may be either ‘strong’,J1 > 0, or ‘weak’,
0 < J2 < J1. Strong and weak couplings are distributed randomly, withp (or 1− p)
being the probability of a weak (or strong) bond. If both interactions occur with the same
probability,p = 1

2, then the model is self-dual [16]. The self-dual point is located at

tanh(J1/kBTc) = exp(−2J2/kBTc) (8)

determining the critical temperature,Tc, of the bulk Ising system (K,L −→ ∞, and full
periodic boundary conditions) if the model undergoes one phase transition. Indeed, results
of previous simulations support that assumption [4, 7]. The simulations were carried out
for the self-dual case, i.e. atp = 1

2.
Certainly, one expects that both bulk and surface will still order at the bulk critical

temperature,Tc, in a two-dimensional model with short-range interactions. The one-
dimensional surface does not support any separate ordering, so that one encounters the
‘ordinary transition’ [17, 18].

Varying, in the self-dual case, the ratio of the strong and weak couplings,r = J2/J1,
one may change the degree of dilution. Atr = 1, one recovers the perfect Ising model,
while r = 0 corresponds to the percolation limit, whereTc = 0. As has been shown before
[7], the crossover to the randomness-dominated bulk critical behaviour may be monitored
conveniently by choosingr in the range of1

10 to 1
4. Then the crossover length, at criticality,

ranges from a few to about 20 lattice spacings [7]. Indeed, we simulated the random model
at these two values,r = 1

4 and 1
10, augmented by computations for the perfect model,r = 1.

Most of the simulations were performed for the (11) surface, albeit some runs were
also completed for the (10) surface to compare with exact results. For the (11) surfaces,
we usually setL = K/2, with K ranging from 40 to 1280 to check for finite-size effects.
For the (10) surfaces, quadratic systems were studied. We averaged over an ensemble of
bond configurations (or realizations). The number of realizations typically ranged from at
least 15 for the largest systems up to several hundred for the small systems. In general,
the one-cluster flip MC algorithm was used (mainly for testing purposes, we also applied
the single-spin–flip method) generating, close to the critical point, several 104 clusters per
realization. Note that the statistical errors for each realization were significantly smaller
than those resulting from the ensemble averaging. To avoid inaccuracies due to a, possibly,
unfortunate choice of the random-number generators, we compared results obtained from
shift register and linear congruential generators.

The crucial quantity, computed in the MC simulations, is the magnetization profile. It
is described by the magnetization per line,m(i) = 〈|∑ si,j |〉/L, wheresi,j denotes the spin
in line i and rowj , with i = 1, 2, . . . , K, and summing overj = 1, 2, . . . , L. The absolute
values are taken to obtain a non-vanishing profile for finite systems, as usual. The surface
magnetization is given bym1 = m(1) = m(K).

Because the distribution of the random bonds is the same in the bulk and at the surface,
one may expect a monotonic decrease ofm(i) on approach to the surface, due to the reduced
coordination number at the surface (being two for the (11) and three for the (10) surface).
This behaviour is illustrated in figure 1, comparing magnetization profiles of the perfect,
r = 1, and random,r = 1

4, Ising model with a (11) surface, at the same distances from
Tc, measured by the reduced temperaturet = |T − Tc|/Tc. The critical point,Tc, follows
from (1). Obviously, randomness tends to suppress the magnetization, at a fixed value of
t . The profiles display a pronounced plateau around the centre of the systems, at which
the bulk magnetization,mb, is reached. The existence of the broad plateau indicates that
the linear dimensionK of the MC system is sufficiently large to compute, for instance,
the surface magnetization of the semi-infinite system. Of course, in addition, one has to
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Figure 1. Magnetization profilesm(i) of two-dimensional perfect (squares) and random,r = 1
4

(circles), Ising models with (11) surfaces, att = 0.2 (open symbols) andt = 0.05 (full symbols).
Systems of size 160× 80 were simulated.

monitor possible changes ofm1 with L, thereby having possible finite-size effects due to
that dimension under control. Note thatmb is known exactly in the perfect case [14], and
very accurately in the random case [7].

For the perfect two-dimensional Ising model with a (10) surface, the complete
magnetization profile has been calculated exactly in the continuum limit [19, 20]. In
particular, the profile approaches the bulk value in an exponential form, withmb −m(i) ∝
exp(−i/ξr), whereξr is the bulk ‘correlation range’, which only becomes asymptotically, as
T −→ Tc, identical to the bulk ‘true correlation length’ [21]. Indeed, we tested the accuracy
of our simulational data by comparing them, for the (10) surface, to the exact expression.
In addition, we found that the same correlation range determines the exponential approach
of the magnetization towards its bulk value in the (11) case as well.

For the perfect two-dimensional Ising model with a (11) surface, exact results exist for
the surface magnetization,m1, and the magnetization in the next line,m(2) [22]. Again,
the MC data, obtained with modest computational efforts, agreed very well with the exact
results, as shown in figure 2. In the figure, the ‘effective exponent’β(i)eff is depicted,
defined by

β(i)eff(t) = d ln(m(i))/d ln(t). (9)

Certainly, ast −→ 0, the effective exponent acquires the true asymptotic value
of the critical exponentβ(i). For example, the asymptotic critical exponent of the
surface magnetization isβ(1) = β1 = 1

2, being, incidentally, identical for (11) and (10)
surfaces. Because the magnetizationm(i) is computed at discrete temperaturestk, we use
in analysing the simulational data, instead of (9) the corresponding difference expression,
with t = (tk + tk+1)/2. The error bars, included in figure 2, have been calculated in a
conservative fashion, getting the bounds forβ by comparing the upper (lower) limit ofm(i)
to the lower (upper) limit ofm(i+1), where the bounds of the magnetization are computed
in the standard way from the ensemble averaging. Alternately, we also computed the error
bars from usual error propagation, which turned out to be appreciably smaller.
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Figure 2. Effective exponentβ(i)eff, with i = 1, 2, 3, and 10, versus reduced temperaturet ,
for the perfect Ising model with (11) surface. The full curves denote exact results [14, 22]. MC
data for systems of sizes 80×40 (t > 0.3), 160×80 (0.07< t < 0.3), and 320×160 (t < 0.07)
are shown.

In figure 2, the temperature dependence of the effective exponentβ(i)eff deeper in the
bulk is also displayed. For example ati = 10, one readily observes the crossover from the
bulk effective exponent (as follows from the exact expression for the bulk magnetization
[14]) to the surface dominated behaviour, when the correlation length becomes large
compared with the distance from the surface. In general, at finite and arbitrarily large
distances to the surface,β(i)eff will always converge, on approach toTc, to the surface
critical exponent,β1 = 1

2, and not to the bulk critical exponent,β = 1
8. Analogous

observations have been reported for three-dimensional Ising models with surfaces [23].
The main aim of the MC study has been to estimateβ1 in the random case. Results

of the extensive simulations are summarized in figure 3, depicting the effective exponent
β(1)eff(t) at r = 1

4 andr = 1
10, compared with its exactly known form for the perfect case,

r = 1. Typical error bars, increasing closer to criticality, are displayed, based on standard
error propagation resulting from the variance in ensemble averaging ofm1(tk) andm1(tk+1).
Data obviously affected by finite-size effects have not been included in the figure.

As seen from figure 3, at a fixed distance from the critical point,t , β(1)eff rises
systematically with increasing dilution, reflecting the decrease inm1 with stronger
randomness. However, asymptotically,t −→ 0, it is conceivable that the surface critical
exponent will coincide in the perfect and dilute cases, withβ1 = 1

2. Indeed, a reasonable
estimate, both forr = 1

4 andr = 1
10, is β1 = 0.49± 0.02.

Thence, the simulations demonstrated that the critical exponentβ1 is rather robust against
introducing randomness simultaneously in the bulk and at the surface. Note thatβ1 remains
1
2 too, when only the surface bonds of the two-dimensional Ising model are randomized
as described above, but keeping a unique bulk coupling, as we confirmed in simulations.
Interestingly enough, in the three-dimensional case, introducing random nearest-neighbour
strong and weak surface bonds, but having only one interaction for the bulk couplings,
seems to be an irrelevant perturbation as well, i.e. the surface critical exponent seems to
be the same as for the perfect surface,β1 ≈ 0.80 [23]. This robustness may indicate
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Figure 3. Effective exponentβ(1)eff, versus reduced temperaturet , for the random two-
dimensional Ising model with (11) surface, atr = 1

4 (circles) andr = 1
10 (triangles). Systems

of sizes 80×40 (t > 0.3), 160× 80 (t = 0.275), 320× 160 (0.1 < t < 0.275), 640× 320
(0.05< t < 0.1), and 1280× 640 (t < 0.05) were simulated. The full curve denotes the exact
result in the perfect case [22].

that the bulk critical fluctuations play a crucial role for the surface critical exponent, even
though it is not determined by bulk critical exponents [17, 18]. If this is true, then our
result for the two-dimensional case with random bulk and surface interactions suggests that
the bulk critical fluctuations are not very sensitive towards dilution (in accordance with
the theory of, at most, logarithmic modifications of the asymptotic power laws describing
critical behaviour of the perfect system in two-dimensional Ising models [3, 4]). We shall
come back to this aspect in the next section.

3. Star–triangle transformation

The star–triangle transformation was introduced by Hilhorst and van Leeuwen [24], and used
later by others [25–27] to calculate the surface magnetization and the surface correlations
in layered triangular lattice Ising models. Here we generalize the method for non-
translationally invariant systems.

3.1. Star–triangle approach to boundary behaviour

The method is based on an exact mapping of the original triangular model, with couplings
{K1}, {K2} and{K3}, to a hexagonal model with couplings{p1}, {p2} and{p3} denoted by
broken lines in figure 4. In the transformation the right-pointing triangles are replaced by
stars such that the couplings are related by

K1 = 1

4
ln

(
cosh(p1+ p2+ p3) cosh(−p1+ p2+ p3)

cosh(p1+ p2− p3) cosh(p1− p2+ p3)

)
(10)

and its cyclic permutation in the indicesi = 1, 2, 3. In the second step of the mapping
the left-pointing stars of the hexagonal lattice are replaced by triangles resulting in a new



Random Ising models 2807

Figure 4. Mapping of the original triangular lattice (full line) to an
equivalent hexagonal lattice (broken line) and further to a new triangular
lattice (dotted line) using the ST transformation. The surface spins of
thenth model(S(n)l ) and those of the(n+ 1)th model(S(n+1)

l+ , S
(n+1)
l− )

are connected by the surface couplings of the intermediate(n + 1)th
hexagonal model(p(n+1)

l+ , p
(n+1)
l− ). The couplings{Ki}, {pi}, i = 1, 2, 3

appearing in the ST relation in (10) are also indicated.

triangular lattice, which is denoted by dotted lines in figure 4. Iterating this procedure a
sequence of triangular Ising models is generated (n = 0, 1, 2, . . .) from the original model
with n = 0.

As seen in figure 4, the surface spins of thenth and the(n+1)th models are connected
by the surface couplings of the intermediate hexagonal model. In this geometry, the thermal
average of thelth surface spin of thenth model, denoted by〈s(n)l 〉 ≡ σ (n)l is connected to
the thermal averages of the neighbouring spinss

(n+1)
l− and s(n+1)

l+ of the (n + 1)th model,

where the corresponding surface couplings of the hexagonal lattice are denoted byp
(n+1)
l−

andp(n+1)
l+ . As shown in the appendix, one has

σ
(n)
l = a(n+1)

l+ σ
(n+1)
l+ + a(n+1)

l− σ
(n+1)
l− (11)

where

a
(n)
l+ = tanh(p(n)l+ )

1− tanh2(p
(n)
l− )

1− tanh2(p
(n)
l+ ) tanh2(p

(n)
l− )

(12)

while in a(n)l− one should interchangep(n)l+ andp(n)l− . Now using the vector notationσ(n) for
the surface spin exceptational values in thenth model and similarlyσ(n+2) for the (n+2)th
model we obtain the relation

σ(n) = A(n+1)A(n+2)σ(n+2) (13)

where the non-vanishing elements of theA(n+1) matrix are given bya(n+1)
+ (l) anda(n+1)

− (l)

in terms of the surface couplings of the(n + 1)th hexagonal lattice, equation (12), and
a similar relation holds forA(n+2). (We consider two successive steps in (13) in order to
avoid complications with the different parity of the odd and even number of transformations.)
Now taking the boundary condition limn→∞ σ(n) = (1, ,1, . . . ,1) we obtain for the average
surface magnetization

m1 = lim
L→∞

1

L

L∑
l=1

σ
(0)
l = lim

n→∞ f (n) (14)

with

f (n) = lim
L→∞

1

L

L∑
i,j=1

[ n∏
k=1

A(k)

]
ij

. (15)
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Figure 5. Magnetization of the(1, 1) surface of the two-dimensional random Ising model with
r = 1

10 as a function of the temperature. The finite iteration approximantsf (n) of the ST method
in equation (15) are indicated by circles(n = 128), squares(n = 256), triangles(n = 512) and
by crosses(n = 1024). The asymptotic behaviour off (n) is different forT < Tc, T > Tc and
at T = Tc, as given in (18), (19) and (20), respectively.

We note thatf (n) in (15) is formally equivalent to the partition function of ann-step directed
walk (polymer) in a random environment, where the (random) fugacities corresponding to
the kth step of the walk are contained in theA(k) matrix, which is just the transfer matrix
of the directed walk.

Next we consider the average connected surface correlation function defined as

Gs(l) = lim
L→∞

1

L

L∑
i=1

[〈si+lsi〉 − 〈si+l〉〈si〉]. (16)

As shown in the appendix, the surface correlations in thenth triangular model are connected
to those in the(n+ 1)th model, and the relation is given in terms of the surface couplings
of the intermediate hexagonal lattice, equation (30), similarly to (11). Furthermore, as we
argue in the appendix, in the asymptotic limit (l � 1) the surface correlation function can
be expressed by the partition functionf (n) of the corresponding directed walk,

Gs(l) ∝
∫ ∞

0
dn

l

n3/2
exp

(
− l

2

n

)
[f 2(n)− f 2(∞)]. (17)

Thus the surface properties of the model are connected to the asymptotic behaviour off (n)

in (15). For different temperatures, corresponding to different thermodynamical phases of
the random Ising model, thef (n) function has different asymptotic behaviour, as can be
seen in figure 5 for a dilution ofr = 1

10.
In the ordered phase,T < Tc, f (n) approaches a finite limit, the surface magnetization

m1, through an exponential decay,

f 2(n) = m2
1(T )+A exp(−n/4ξ2

‖ ) T < Tc. (18)
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For T > Tc the limiting value off (n) is zero, which corresponds to vanishing surface
magnetization, and the decay forT > Tc is exponential,

f (n) ∝ exp(−n/8ξ2
‖ ) T > Tc (19)

whereasat the critical point, it has the form of a power law

f (n) ∝ n−γ T = Tc. (20)

We argue thatξ‖ in equations (18) and (19) is the surface correlation length, below and above
the critical point, respectively. Indeed, substituting (18) or (19) into (17) and evaluating the
integral by the saddle-point method, we obtain

Gs(l) ∝ exp(−l/ξ‖) (21)

in accordance with the definition of the surface correlation length.
At the critical point, wheref (n) as in (20), the surface correlation function in equation

(17) leads to a power-law decayGs(l) ∼ l−4γ . Thus the decay exponent,η‖, of the critical
surface correlation function is given by

η‖ = 4γ. (22)

We conclude at this point, that we have obtained a complete description about the surface
properties of the random Ising model by the ST method. In the following, we shall use
the above formalism to calculate numerically the surface magnetization, the critical surface
correlations, and the correlation length.

3.2. Numerical results

In the actual calculations, we considered the random Ising model of the MC simulations,
with a (1, 1) surface, on a strip of widthL of a diagonal square lattice (which can be
considered as a triangular lattice with vanishing vertical couplings) and imposed periodic
boundary conditions. To reduce finite-size effects, we considered relatively large strips (with
L up to 512). We checked that the difference between the results for the two largest strips
(L = 256 andL = 512) is essentially negligible, doing up ton = 2000 iterations†. We
calculated the partition functionf (n) as a function ofn, averaging over several (typically
around twenty) random configurations of the couplings. The ratior between the two, weak
and strong, random couplings was chosen to be 1,1

4, and 1
10, as in the simulations; both

couplings occur with the same probability,p = 1
2.

We start with the analysis of the results in the ordered phase, i.e.T < Tc. For a
given temperature,f (n) approaches the surface magnetizationm1, see (14), which is found
to agree (within the error of the calculations) with MC data presented in the previous
section. Approaching the critical point, the convergency off (n) with n becomes slower,
in accordance with the form of the correction term in (18). Accordingly, accurate estimates
become more difficult. As in the case of the simulations, the ensemble sampling over
different configurations seems to be, however, the main source of error.

From the values form1(t) at different reduced temperaturest , we determined effective
surface magnetization exponentsβ(1)eff(t), as defined in (9). The estimates of the effective
exponents obtained from the ST method are close to those found by the MC technique, see
figure 3. Thus we confirm thatβ1 is rather robust against introducing randomness in the
two-dimensional Ising model.

† One expects that the characteristic values ofn and L are related byL ∼ n1/2, like the size of transverse
fluctuations of a directed walk to the numbern of steps.
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Figure 6. Finite iteration approximants to the surface magnetization,f (n), as a function ofn
in a log–log plot, at the critical point of the two-dimensional random Ising model with dilution
r = 1

10 (squares) andr = 1
4 (circles), compared with the perfect model (triangles). The slope of

the curves, indicated by straight lines, is related to the average decay exponentη‖ of the critical
surface correlations through (22), see text.

At Tc, we studied the surface correlation function, as follows from the partition function
f (n). As shown in figure 6,f (n) exhibits, withn ranging from 100 to 1000, on a log–log
plot (ln(f (n)) versus ln(n)), an almost linear behaviour. The average slope then defines
an average decay exponentγav, see (20). For the perfect model, our estimate agrees nicely
with the exact valueγpure = 1

4. In the random case, the average exponent decreases with
rising randomness, i.e. decreasing value ofr. For 100< n < 1000, we obtain the average
exponentsγav = 0.228 andγav = 0.207, atr = 1

4 and r = 1
10, respectively. Based on

these estimates, one may argue, that the decay exponentη‖, see equation (22), also varies
with dilution, r. However, a more detailed analysis is needed to substantiate or repudiate
these statements. For instance, looking at the local effective exponent, defined in analogy
to (9), a slight increase of that exponent with increasingn is observed. Indeed, the data for
f (n) depicted in figure 6, may be fitted by the power law of the perfect model, modified by
logarithmic corrections with almost identical confidence (doing least-square fits) as by the
power laws with the average, dilution dependent exponents. Thence, our data leave room
to different interpretations.

In the disordered phase of the model,T > Tc, we studied the correlation length from the
asymptotic decay off (n) in (19). Examples of the results of our calculations are shown in
figure 7, plotting ln(f (n)) as a function ofn at several temperaturest for r = 1

10. As seen
from the figure,f (n) seems to exhibit an exponential decay, withξ‖(t)−2 following from
the slopes of the curves. Approaching the critical temperatureTc, the correlation length is
expected to diverge asξ‖(t) ∼ t−ν . From data att > 0.05, we calculated average critical
exponentsνav(t), with νav = 1.07(2) at r = 1

4, andνav = 1.13(6) at r = 1
10. These average

exponents are larger than the asymptotic exponent of the pure model,νpure = 1, see (6),
and vary with the degree of dilution. Note that similar values have been obtained before
by using finite-size scaling [11]. However, those average values have been interpreted as
reflecting logarithmic corrections to the power law of the perfect case [11]. Again, we
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Figure 7. Finite iteration approximants to the surface magnetization,f (n), as a function ofn in
a semi-logarithmic plot, at different reduced temperaturest = 0.1 (triangles),t = 0.2 (circles)
and t = 0.3 (squares) above the critical point of the two-dimensional random Ising model with
r = 1

10. The slope of the curves, indicated by straight lines, corresponds to the inverse square
of the average correlation length, see equation (19).

cannot rule out that possibility.
For further interpretation of our data, we consider the scaling relation [17]

β1 = νη‖/2 (23)

which is satisfied, within the errors of the estimates, by the average exponents, both for
r = 1

4 andr = 1
10. Following the alternate interpretation involving logarithmic corrections,

the critical surface correlations, described byη‖, would then be affected by logarithmic
corrections, due to the correction terms in the correlation length (and their presumed absence
in the surface magnetization). The above scaling law, (23), can be obtained by relating the
surface correlation function between two spins at a distance of the correlation length,ξ(t),
to the square of the surface magnetization,

Gs(ξ(t)) ∼ m2
1(t) (24)

in the limit t → 0 (when logarithmic corrections are present, such a relation has been, for
instance, checked for theq = 4 state Potts model [28]). Then, supposing logarithmic terms
in the surface correlations, but not in the surface magnetization, one easily arrives at the
conjecture

Gs(l) ∼ l−1(ln l)1/2. (25)

4. Summary

In this paper, the boundary critical properties of the two-dimensional random Ising model
have been studied by MC techniques and by the ST approach. In the simulations,
we computed magnetization profiles, allowing us to monitor surface and bulk quantities
simultaneously. On the other hand, by the ST method we calculated the surface
magnetization as well as surface correlation functions. Both methods provide data for
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the surface magnetization which are in very good agreement, demonstrating the correctness
and accuracy of the two approaches.

To analyse the behaviour of the random Ising model in the critical region, we considered
three singular quantities: the surface magnetization, the (surface) correlation length and the
critical surface correlation function. The surface magnetization of the dilute model, as
obtained from both methods, follows closely the power law of the corresponding perfect
model, whereβ1 = 1

2, showing the robustness of that exponent against even fairly strong
randomness.

The behaviour of the other two singular quantities, the critical surface correlation
function and the correlation length, as determined from the ST method, is rather subtle.
Note that in the ST method we averaged over thelogarithm of the surface correlation
function, leading to information about thetypical behaviour of the correlation length. The
numerical estimates for the critical exponents of both quantities, i.e.ν‖ andη‖, are found
to be dilution dependent, when calculating average exponents. Similar findings have been
reported before for bulk exponents in the two-dimensional random Ising model. These non-
universal average bulk exponents have been interpreted previously either as reflecting the
true asymptotics (satisfying weak universality) or as being due to logarithmic corrections
of the power laws in the perfect model (in accordance with field-theoretical predictions).
Our numerical data for the surface quantities leave room for both types of interpretation,
concerning bulk and surface critical properties. Extending the field-theoretical predictions
and attributing the apparent variation of the average exponents with the degree of dilution
to logarithmic corrections, we conjectured, in equation (25), the asymptotic form of the
critical surface correlation function.

Note added in proof. Attention is drawn to a recent work suggestingβ1 = 1/2 for the two-dimensional Ising

model with random couplings at the surface [29].
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Appendix

We consider the first two layers of a hexagonal Ising lattice (figure 4), where a surface spin
s is connected to the second layer spinss+ and s− by couplingsp+ andp−, respectively.
We are interested in a relation between the thermal averages〈s+〉, 〈s−〉 and〈s〉.

We start by considering the conditional probability

P(s)|s+,s− =
exp(p+ss+ + p−ss−)∑
s exp(p+ss+ + p−ss−) (26)

with fixed values ofs+ and s−. Under this condition the expectational value ofs is given
by

〈s〉|s+,s− = tanh(p+s+ + p−s−)
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= tanh

[
(s+ + s−)p+ + p−

2
+ (s+ − s−)p+ − p−

2

]
(27)

which can be evaluated using the fact thats+ = ±1 ands− = ±1 as

〈s〉|s+,s− = s+
tanh(p+ + p−)+ tanh(p+ − p−)

2
+ s− tanh(p+ + p−)+ tanh(p− − p+)

2
.

(28)

At this point, one can sum over the variabless+ ands− leading to

〈s〉 = 〈s+〉 tanh(p+ + p−)+ tanh(p+ − p−)
2

+ 〈s−〉 tanh(p+ + p−)+ tanh(p− − p+)
2

(29)

which is equivalent to equation (11).
The connected surface correlation function of thenth triangular modelg(n)(i + l, i) =

〈s(n)i+ls(n)i 〉 − 〈s(n)i+l〉〈s(n)i 〉 and that of the(n+ 1)th model are related by

g(n)(i + l, i) = a(n+1)
(i+l)+a

(n+1)
i+ g(n+1)(i + l + 1, i + 1)+ a(n+1)

(i+l)+a
(n+1)
i− g(n+1)(i + l + 1, i − 1)

+a(n+1)
(i+l)−a

(n+1)
i+ g(n+1)(i + l − 1, i + 1)+ a(n+1)

(i+l)−a
(n+1)
i− g(n+1)(i + l − 1, i − 1)

(30)

which can be obtained along the lines of (11). Iterating the expression in (30), one obtains
a sum, each term of which can be formally represented by two directed walks, which start
at positionsi + l and i, respectively. If the two walks meet at stepn and at some position
j , theng(n)(j, j) = 1− 〈s(n)j 〉2 and the walks annihilate each other. In then → ∞ limit,
the non-vanishing contribution tog(0)(i + l, i) = g(i + l, i) is given by those processes,
which are connected to annihilated walks. In the transfer matrix notation the average surface
correlation function is given by

Gs(l) = 1

L

L∑
i=1

∑
a.w.

[ n∏
m=1

A(m)

]
i+l,j

[ n∏
k=1

A(k)

]
i,j

[1− (σ (n)j )2]. (31)

The asymptotic behaviour of this expression can be obtained by noting that the transverse
fluctuations of directed walks have Gaussian nature, and the corresponding probability
distribution is sharp. Consequently, in the largel (and largen) limit it is enough to consider
the typical processes. Then there are two factors in (31), which are both approaching the
partition function ofn-step directed walks,f (n), see (15), and these contributions should
be multiplied byPn(l), the ratio of those walks which are annihilated at thenth step. In
this way, we obtain

Gs(l) ≈
∑
n

Pn(l)[f
2(n)− f 2(∞)] (32)

which in the continuum approximation is given in (17).
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[16] Fisch R 1978J. Stat. Phys.18 111
[17] Binder K 1983Phase Transitions and Critical Phenomenavol 8, ed C Domb and J L Lebowitz (London:

Academic) p 1
[18] Diehl H W 1986 Phase Transitions and Critical Phenomenavol 10, ed C Domb and J L Lebowitz (London:

Academic) p 75
[19] Bariev R Z 1980Teor. Mat. Fiz.40 95
[20] Czerner P and Ritschel U 1997Int. J. Mod. Phys.B 11 2075
[21] Fisher M E and Ferdinand A E 1967Phys. Rev. Lett.19 169
[22] Peschel I 1984Phys. Rev.B 30 6783
[23] Pleimling M and Selke W 1998Eur. Phys. J.B 1 385
[24] Hilhorst H J and van Leeuwen J M J1981Phys. Rev. Lett.47 1188
[25] Burkhardt T W, Guim I, Hilhorst H J and van Leeuwen J M J1984Phys. Rev.B 30 1486
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